[RFC PATCH 01/10] Import Tiny AES128
loicmichel
5loicmichel5 at wanadoo.fr
Fri Nov 14 14:35:58 PST 2014
Dear Anton Lundin,
I'm used to program in C# and have zaro experience with C.
Are you aware of any c# code to link to the libdivecomputer ?
I can't figure out from the example how to download and use data from a VEO2 computer.
Thanks for help,
Loïc
> Message du 14/11/14 18:02
> De : "Anton Lundin"
> A : "Libdivecomputer Mailinglist"
> Copie à :
> Objet : [RFC PATCH 01/10] Import Tiny AES128
>
> This imports Tiny AES128 from https://github.com/kokke/tiny-AES128-C for
> use in the decoding of OSTC3 firmwares.
>
> This aes-code is released into the public domain.
>
> Signed-off-by: Anton Lundin
> ---
> msvc/libdivecomputer.vcproj | 6 +
> src/Makefile.am | 1 +
> src/aes.c | 486 ++++++++++++++++++++++++++++++++++++++++++++
> src/aes.h | 16 ++
> 4 files changed, 509 insertions(+)
> create mode 100644 src/aes.c
> create mode 100644 src/aes.h
>
> diff --git a/msvc/libdivecomputer.vcproj b/msvc/libdivecomputer.vcproj
> index 78a8190..10a4cf7 100644
> --- a/msvc/libdivecomputer.vcproj
> +++ b/msvc/libdivecomputer.vcproj
> @@ -247,6 +247,9 @@
> >
>
> + RelativePath="..\src\aes.c"
> + >
> + RelativePath="..\src\hw_ostc3.c"
> >
>
> @@ -537,6 +540,9 @@
> >
>
> + RelativePath="..\src\aes.h"
> + >
> + RelativePath="..\include\libdivecomputer\hw_ostc3.h"
> >
>
> diff --git a/src/Makefile.am b/src/Makefile.am
> index 595f0c7..eb39a4b 100644
> --- a/src/Makefile.am
> +++ b/src/Makefile.am
> @@ -43,6 +43,7 @@ libdivecomputer_la_SOURCES = \
> ihex.h ihex.c \
> hw_ostc.c hw_ostc_parser.c \
> hw_frog.c \
> + aes.h aes.c \
> hw_ostc3.c \
> cressi_edy.c cressi_edy_parser.c \
> cressi_leonardo.c cressi_leonardo_parser.c \
> diff --git a/src/aes.c b/src/aes.c
> new file mode 100644
> index 0000000..000a067
> --- /dev/null
> +++ b/src/aes.c
> @@ -0,0 +1,486 @@
> +/*
> +
> +This is an implementation of the AES128 algorithm, specifically ECB mode.
> +
> +The implementation is verified against the test vectors in:
> + National Institute of Standards and Technology Special Publication 800-38A 2001 ED
> +
> +ECB-AES128
> +----------
> +
> + plain-text:
> + 6bc1bee22e409f96e93d7e117393172a
> + ae2d8a571e03ac9c9eb76fac45af8e51
> + 30c81c46a35ce411e5fbc1191a0a52ef
> + f69f2445df4f9b17ad2b417be66c3710
> +
> + key:
> + 2b7e151628aed2a6abf7158809cf4f3c
> +
> + resulting cipher
> + 50fe67cc996d32b6da0937e99bafec60
> + d9a4dada0892239f6b8b3d7680e15674
> + a78819583f0308e7a6bf36b1386abf23
> + c6d3416d29165c6fcb8e51a227ba994e
> +
> +
> +NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
> + You should pad the end of the string with zeros if this is not the case.
> +
> +*/
> +
> +#ifndef _AES_C_
> +#define _AES_C_
> +
> +
> +/*****************************************************************************/
> +/* Includes: */
> +/*****************************************************************************/
> +#include
> +#include "aes.h"
> +
> +
> +/*****************************************************************************/
> +/* Defines: */
> +/*****************************************************************************/
> +// The number of columns comprising a state in AES. This is a constant in AES. Value=4
> +#define Nb 4
> +// The number of 32 bit words in a key.
> +#define Nk 4
> +// Key length in bytes [128 bit]
> +#define keyln 16
> +// The number of rounds in AES Cipher.
> +#define Nr 10
> +
> +
> +/*****************************************************************************/
> +/* Private variables: */
> +/*****************************************************************************/
> +// in - pointer to the CipherText to be decrypted.
> +// out - pointer to buffer to hold output of the decryption.
> +// state - array holding the intermediate results during decryption.
> +static uint8_t* in, *out, state[4][4];
> +
> +// The array that stores the round keys.
> +static uint8_t RoundKey[176];
> +
> +// The Key input to the AES Program
> +static uint8_t* Key;
> +
> +// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
> +// The numbers below can be computed dynamically trading ROM for RAM -
> +// This can be useful in (embedded) bootloader applications, where ROM is often limited.
> +static const uint8_t sbox[256] = {
> + //0 1 2 3 4 5 6 7 8 9 A B C D E F
> + 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
> + 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
> + 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
> + 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
> + 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
> + 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
> + 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
> + 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
> + 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
> + 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
> + 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
> + 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
> + 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
> + 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
> + 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
> + 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
> +
> +static const uint8_t rsbox[256] =
> +{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
> +, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
> +, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
> +, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
> +, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
> +, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
> +, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
> +, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
> +, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
> +, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
> +, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
> +, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
> +, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
> +, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
> +, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
> +, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
> +
> +
> +// The round constant word array, Rcon[i], contains the values given by
> +// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
> +// Note that i starts at 1, not 0).
> +static const uint8_t Rcon[255] = {
> + 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
> + 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
> + 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
> + 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
> + 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
> + 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
> + 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
> + 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
> + 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
> + 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
> + 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
> + 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
> + 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
> + 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
> + 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
> + 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
> +
> +
> +/*****************************************************************************/
> +/* Private functions: */
> +/*****************************************************************************/
> +static uint8_t getSBoxValue(uint8_t num)
> +{
> + return sbox[num];
> +}
> +
> +static uint8_t getSBoxInvert(uint8_t num)
> +{
> + return rsbox[num];
> +}
> +
> +
> +// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
> +static void KeyExpansion()
> +{
> + uint32_t i, j, k;
> + uint8_t tempa[4]; // used for the column/row operations
> +
> + // The first round key is the key itself.
> + for(i = 0; i < Nk; ++i)
> + {
> + RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
> + RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
> + RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
> + RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
> + }
> +
> + // All other round keys are found from the previous round keys.
> + for(; (i < (Nb * (Nr + 1))); ++i)
> + {
> + for(j = 0; j < 4; ++j)
> + {
> + tempa[j]=RoundKey[(i-1) * 4 + j];
> + }
> + if (i % Nk == 0)
> + {
> + // This function rotates the 4 bytes in a word to the left once.
> + // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
> +
> + // Function RotWord()
> + {
> + k = tempa[0];
> + tempa[0] = tempa[1];
> + tempa[1] = tempa[2];
> + tempa[2] = tempa[3];
> + tempa[3] = k;
> + }
> +
> + // SubWord() is a function that takes a four-byte input word and
> + // applies the S-box to each of the four bytes to produce an output word.
> +
> + // Function Subword()
> + {
> + tempa[0] = getSBoxValue(tempa[0]);
> + tempa[1] = getSBoxValue(tempa[1]);
> + tempa[2] = getSBoxValue(tempa[2]);
> + tempa[3] = getSBoxValue(tempa[3]);
> + }
> +
> + tempa[0] = tempa[0] ^ Rcon[i/Nk];
> + }
> + else if (Nk > 6 && i % Nk == 4)
> + {
> + // Function Subword()
> + {
> + tempa[0] = getSBoxValue(tempa[0]);
> + tempa[1] = getSBoxValue(tempa[1]);
> + tempa[2] = getSBoxValue(tempa[2]);
> + tempa[3] = getSBoxValue(tempa[3]);
> + }
> + }
> + RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
> + RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
> + RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
> + RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
> + }
> +}
> +
> +// This function adds the round key to state.
> +// The round key is added to the state by an XOR function.
> +static void AddRoundKey(uint8_t round)
> +{
> + uint8_t i,j;
> + for(i=0;i<4;i++)
> + {
> + for(j = 0; j < 4; ++j)
> + {
> + state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
> + }
> + }
> +}
> +
> +// The SubBytes Function Substitutes the values in the
> +// state matrix with values in an S-box.
> +static void SubBytes()
> +{
> + uint8_t i, j;
> + for(i = 0; i < 4; ++i)
> + {
> + for(j = 0; j < 4; ++j)
> + {
> + state[i][j] = getSBoxValue(state[i][j]);
> + }
> + }
> +}
> +
> +// The ShiftRows() function shifts the rows in the state to the left.
> +// Each row is shifted with different offset.
> +// Offset = Row number. So the first row is not shifted.
> +static void ShiftRows()
> +{
> + uint8_t temp;
> +
> + // Rotate first row 1 columns to left
> + temp = state[1][0];
> + state[1][0] = state[1][1];
> + state[1][1] = state[1][2];
> + state[1][2] = state[1][3];
> + state[1][3] = temp;
> +
> + // Rotate second row 2 columns to left
> + temp = state[2][0];
> + state[2][0] = state[2][2];
> + state[2][2] = temp;
> +
> + temp = state[2][1];
> + state[2][1] = state[2][3];
> + state[2][3] = temp;
> +
> + // Rotate third row 3 columns to left
> + temp = state[3][0];
> + state[3][0] = state[3][3];
> + state[3][3] = state[3][2];
> + state[3][2] = state[3][1];
> + state[3][1] = temp;
> +}
> +
> +static uint8_t xtime(uint8_t x)
> +{
> + return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
> +}
> +
> +// MixColumns function mixes the columns of the state matrix
> +static void MixColumns()
> +{
> + uint8_t i;
> + uint8_t Tmp,Tm,t;
> + for(i = 0; i < 4; ++i)
> + {
> + t = state[0][i];
> + Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;
> + Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;
> + Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;
> + Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;
> + Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;
> + }
> +}
> +
> +// Multiplty is a macro used to multiply numbers in the field GF(2^8)
> +#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))
> +
> +
> +// MixColumns function mixes the columns of the state matrix.
> +// The method used to multiply may be difficult to understand for the inexperienced.
> +// Please use the references to gain more information.
> +static void InvMixColumns()
> +{
> + int i;
> + uint8_t a,b,c,d;
> + for(i=0;i<4;i++)
> + {
> +
> + a = state[0][i];
> + b = state[1][i];
> + c = state[2][i];
> + d = state[3][i];
> +
> +
> + state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
> + state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
> + state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
> + state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
> + }
> +}
> +
> +
> +// The SubBytes Function Substitutes the values in the
> +// state matrix with values in an S-box.
> +static void InvSubBytes()
> +{
> + uint8_t i,j;
> + for(i=0;i<4;i++)
> + {
> + for(j=0;j<4;j++)
> + {
> + state[i][j] = getSBoxInvert(state[i][j]);
> + }
> + }
> +}
> +
> +
> +static void InvShiftRows()
> +{
> + uint8_t temp;
> +
> + // Rotate first row 1 columns to right
> + temp=state[1][3];
> + state[1][3]=state[1][2];
> + state[1][2]=state[1][1];
> + state[1][1]=state[1][0];
> + state[1][0]=temp;
> +
> + // Rotate second row 2 columns to right
> + temp=state[2][0];
> + state[2][0]=state[2][2];
> + state[2][2]=temp;
> +
> + temp=state[2][1];
> + state[2][1]=state[2][3];
> + state[2][3]=temp;
> +
> + // Rotate third row 3 columns to right
> + temp=state[3][0];
> + state[3][0]=state[3][1];
> + state[3][1]=state[3][2];
> + state[3][2]=state[3][3];
> + state[3][3]=temp;
> +}
> +
> +
> +// Cipher is the main function that encrypts the PlainText.
> +static void Cipher()
> +{
> + uint8_t i, j, round = 0;
> +
> + //Copy the input PlainText to state array.
> + for(i = 0; i < 4; ++i)
> + {
> + for(j = 0; j < 4 ; ++j)
> + {
> + state[j][i] = in[(i * 4) + j];
> + }
> + }
> +
> + // Add the First round key to the state before starting the rounds.
> + AddRoundKey(0);
> +
> + // There will be Nr rounds.
> + // The first Nr-1 rounds are identical.
> + // These Nr-1 rounds are executed in the loop below.
> + for(round = 1; round < Nr; ++round)
> + {
> + SubBytes();
> + ShiftRows();
> + MixColumns();
> + AddRoundKey(round);
> + }
> +
> + // The last round is given below.
> + // The MixColumns function is not here in the last round.
> + SubBytes();
> + ShiftRows();
> + AddRoundKey(Nr);
> +
> + // The encryption process is over.
> + // Copy the state array to output array.
> + for(i = 0; i < 4; ++i)
> + {
> + for(j = 0; j < 4; ++j)
> + {
> + out[(i * 4) + j] = state[j][i];
> + }
> + }
> +}
> +
> +static void InvCipher()
> +{
> + uint8_t i,j,round=0;
> +
> + //Copy the input CipherText to state array.
> + for(i=0;i<4;i++)
> + {
> + for(j=0;j<4;j++)
> + {
> + state[j][i] = in[i*4 + j];
> + }
> + }
> +
> + // Add the First round key to the state before starting the rounds.
> + AddRoundKey(Nr);
> +
> + // There will be Nr rounds.
> + // The first Nr-1 rounds are identical.
> + // These Nr-1 rounds are executed in the loop below.
> + for(round=Nr-1;round>0;round--)
> + {
> + InvShiftRows();
> + InvSubBytes();
> + AddRoundKey(round);
> + InvMixColumns();
> + }
> +
> + // The last round is given below.
> + // The MixColumns function is not here in the last round.
> + InvShiftRows();
> + InvSubBytes();
> + AddRoundKey(0);
> +
> + // The decryption process is over.
> + // Copy the state array to output array.
> + for(i=0;i<4;i++)
> + {
> + for(j=0;j<4;j++)
> + {
> + out[i*4+j]=state[j][i];
> + }
> + }
> +}
> +
> +
> +/*****************************************************************************/
> +/* Public functions: */
> +/*****************************************************************************/
> +
> +void AES128_ECB_encrypt(uint8_t* input, uint8_t* key, uint8_t *output)
> +{
> + // Copy the Key and CipherText
> + Key = key;
> + in = input;
> + out = output;
> +
> + // The KeyExpansion routine must be called before encryption.
> + KeyExpansion();
> +
> + // The next function call encrypts the PlainText with the Key using AES algorithm.
> + Cipher();
> +}
> +
> +void AES128_ECB_decrypt(uint8_t* input, uint8_t* key, uint8_t *output)
> +{
> + Key = key;
> + in = input;
> + out = output;
> +
> + KeyExpansion();
> +
> + InvCipher();
> +}
> +
> +#endif //_AES_C_
> +
> +
> diff --git a/src/aes.h b/src/aes.h
> new file mode 100644
> index 0000000..5fb2176
> --- /dev/null
> +++ b/src/aes.h
> @@ -0,0 +1,16 @@
> +#ifndef _AES_H_
> +#define _AES_H_
> +
> +#include
> +
> +#ifdef __cplusplus
> +extern "C" {
> +#endif /* __cplusplus */
> +
> +void AES128_ECB_encrypt(uint8_t* input, uint8_t* key, uint8_t *output);
> +void AES128_ECB_decrypt(uint8_t* input, uint8_t* key, uint8_t *output);
> +
> +#ifdef __cplusplus
> +}
> +#endif /* __cplusplus */
> +#endif //_AES_H_
> --
> 1.9.1
>
> _______________________________________________
> devel mailing list
> devel at libdivecomputer.org
> http://libdivecomputer.org/cgi-bin/mailman/listinfo/devel
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://libdivecomputer.org/pipermail/devel/attachments/20141114/505fbacb/attachment-0001.html>
More information about the devel
mailing list