[PATCH v2 01/15] Import Tiny AES128

Anton Lundin glance at acc.umu.se
Wed Dec 17 14:10:58 PST 2014


This imports Tiny AES128 from https://github.com/kokke/tiny-AES128-C for
use in the decoding of OSTC3 firmwares.

This aes-code is released into the public domain.

Signed-off-by: Anton Lundin <glance at acc.umu.se>
---
 msvc/libdivecomputer.vcproj |   6 +
 src/Makefile.am             |   1 +
 src/aes.c                   | 583 ++++++++++++++++++++++++++++++++++++++++++++
 src/aes.h                   |  40 +++
 4 files changed, 630 insertions(+)
 create mode 100644 src/aes.c
 create mode 100644 src/aes.h

diff --git a/msvc/libdivecomputer.vcproj b/msvc/libdivecomputer.vcproj
index 2fea2b9..c8a2a8b 100644
--- a/msvc/libdivecomputer.vcproj
+++ b/msvc/libdivecomputer.vcproj
@@ -255,6 +255,9 @@
 				>
 			</File>
 			<File
+				RelativePath="..\src\aes.c"
+				>
+			<File
 				RelativePath="..\src\hw_ostc3.c"
 				>
 			</File>
@@ -561,6 +564,9 @@
 				>
 			</File>
 			<File
+				RelativePath="..\src\aes.h"
+				>
+			<File
 				RelativePath="..\include\libdivecomputer\hw_ostc3.h"
 				>
 			</File>
diff --git a/src/Makefile.am b/src/Makefile.am
index 1f52841..821bc1b 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -44,6 +44,7 @@ libdivecomputer_la_SOURCES = \
 	ihex.h ihex.c \
 	hw_ostc.c hw_ostc_parser.c \
 	hw_frog.c \
+	aes.h aes.c \
 	hw_ostc3.c \
 	cressi_edy.c cressi_edy_parser.c \
 	cressi_leonardo.c cressi_leonardo_parser.c \
diff --git a/src/aes.c b/src/aes.c
new file mode 100644
index 0000000..4c7645f
--- /dev/null
+++ b/src/aes.c
@@ -0,0 +1,583 @@
+/*
+
+This is an implementation of the AES128 algorithm, specifically ECB and CBC mode.
+
+The implementation is verified against the test vectors in:
+  National Institute of Standards and Technology Special Publication 800-38A 2001 ED
+
+ECB-AES128
+----------
+
+  plain-text:
+    6bc1bee22e409f96e93d7e117393172a
+    ae2d8a571e03ac9c9eb76fac45af8e51
+    30c81c46a35ce411e5fbc1191a0a52ef
+    f69f2445df4f9b17ad2b417be66c3710
+
+  key:
+    2b7e151628aed2a6abf7158809cf4f3c
+
+  resulting cipher
+    3ad77bb40d7a3660a89ecaf32466ef97 
+    f5d3d58503b9699de785895a96fdbaaf 
+    43b1cd7f598ece23881b00e3ed030688 
+    7b0c785e27e8ad3f8223207104725dd4 
+
+
+NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
+        You should pad the end of the string with zeros if this is not the case.
+
+*/
+
+
+/*****************************************************************************/
+/* Includes:                                                                 */
+/*****************************************************************************/
+#include <stdint.h>
+#include <string.h> // CBC mode, for memset
+#include "aes.h"
+
+
+/*****************************************************************************/
+/* Defines:                                                                  */
+/*****************************************************************************/
+// The number of columns comprising a state in AES. This is a constant in AES. Value=4
+#define Nb 4
+// The number of 32 bit words in a key.
+#define Nk 4
+// Key length in bytes [128 bit]
+#define KEYLEN 16
+// The number of rounds in AES Cipher.
+#define Nr 10
+
+// jcallan at github points out that declaring Multiply as a function 
+// reduces code size considerably with the Keil ARM compiler.
+// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
+#ifndef MULTIPLY_AS_A_FUNCTION
+  #define MULTIPLY_AS_A_FUNCTION 0
+#endif
+
+
+/*****************************************************************************/
+/* Private variables:                                                        */
+/*****************************************************************************/
+// state - array holding the intermediate results during decryption.
+typedef uint8_t state_t[4][4];
+static state_t* state;
+
+// The array that stores the round keys.
+static uint8_t RoundKey[176];
+
+// The Key input to the AES Program
+static const uint8_t* Key;
+
+#if defined(CBC) && CBC
+  // Initial Vector used only for CBC mode
+  static uint8_t* Iv;
+#endif
+
+// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
+// The numbers below can be computed dynamically trading ROM for RAM - 
+// This can be useful in (embedded) bootloader applications, where ROM is often limited.
+static const uint8_t sbox[256] =   {
+  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
+  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
+  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
+  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
+  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
+  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
+  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
+  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
+  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
+  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
+  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
+  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
+  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
+  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
+  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
+  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
+  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
+
+static const uint8_t rsbox[256] =
+{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
+  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
+  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
+  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
+  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
+  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
+  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
+  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
+  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
+  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
+  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
+  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
+  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
+  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
+  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
+  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
+
+
+// The round constant word array, Rcon[i], contains the values given by 
+// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
+// Note that i starts at 1, not 0).
+static const uint8_t Rcon[255] = {
+  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 
+  0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 
+  0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 
+  0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
+  0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 
+  0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 
+  0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 
+  0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 
+  0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 
+  0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
+  0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 
+  0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 
+  0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 
+  0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 
+  0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 
+  0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };
+
+
+/*****************************************************************************/
+/* Private functions:                                                        */
+/*****************************************************************************/
+static uint8_t getSBoxValue(uint8_t num)
+{
+  return sbox[num];
+}
+
+static uint8_t getSBoxInvert(uint8_t num)
+{
+  return rsbox[num];
+}
+
+// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
+static void KeyExpansion(void)
+{
+  uint32_t i, j, k;
+  uint8_t tempa[4]; // Used for the column/row operations
+  
+  // The first round key is the key itself.
+  for(i = 0; i < Nk; ++i)
+  {
+    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
+    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
+    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
+    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
+  }
+
+  // All other round keys are found from the previous round keys.
+  for(; (i < (Nb * (Nr + 1))); ++i)
+  {
+    for(j = 0; j < 4; ++j)
+    {
+      tempa[j]=RoundKey[(i-1) * 4 + j];
+    }
+    if (i % Nk == 0)
+    {
+      // This function rotates the 4 bytes in a word to the left once.
+      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
+
+      // Function RotWord()
+      {
+        k = tempa[0];
+        tempa[0] = tempa[1];
+        tempa[1] = tempa[2];
+        tempa[2] = tempa[3];
+        tempa[3] = k;
+      }
+
+      // SubWord() is a function that takes a four-byte input word and 
+      // applies the S-box to each of the four bytes to produce an output word.
+
+      // Function Subword()
+      {
+        tempa[0] = getSBoxValue(tempa[0]);
+        tempa[1] = getSBoxValue(tempa[1]);
+        tempa[2] = getSBoxValue(tempa[2]);
+        tempa[3] = getSBoxValue(tempa[3]);
+      }
+
+      tempa[0] =  tempa[0] ^ Rcon[i/Nk];
+    }
+    else if (Nk > 6 && i % Nk == 4)
+    {
+      // Function Subword()
+      {
+        tempa[0] = getSBoxValue(tempa[0]);
+        tempa[1] = getSBoxValue(tempa[1]);
+        tempa[2] = getSBoxValue(tempa[2]);
+        tempa[3] = getSBoxValue(tempa[3]);
+      }
+    }
+    RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
+    RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
+    RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
+    RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
+  }
+}
+
+// This function adds the round key to state.
+// The round key is added to the state by an XOR function.
+static void AddRoundKey(uint8_t round)
+{
+  uint8_t i,j;
+  for(i=0;i<4;++i)
+  {
+    for(j = 0; j < 4; ++j)
+    {
+      (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
+    }
+  }
+}
+
+// The SubBytes Function Substitutes the values in the
+// state matrix with values in an S-box.
+static void SubBytes(void)
+{
+  uint8_t i, j;
+  for(i = 0; i < 4; ++i)
+  {
+    for(j = 0; j < 4; ++j)
+    {
+      (*state)[j][i] = getSBoxValue((*state)[j][i]);
+    }
+  }
+}
+
+// The ShiftRows() function shifts the rows in the state to the left.
+// Each row is shifted with different offset.
+// Offset = Row number. So the first row is not shifted.
+static void ShiftRows(void)
+{
+  uint8_t temp;
+
+  // Rotate first row 1 columns to left  
+  temp           = (*state)[0][1];
+  (*state)[0][1] = (*state)[1][1];
+  (*state)[1][1] = (*state)[2][1];
+  (*state)[2][1] = (*state)[3][1];
+  (*state)[3][1] = temp;
+
+  // Rotate second row 2 columns to left  
+  temp           = (*state)[0][2];
+  (*state)[0][2] = (*state)[2][2];
+  (*state)[2][2] = temp;
+
+  temp       = (*state)[1][2];
+  (*state)[1][2] = (*state)[3][2];
+  (*state)[3][2] = temp;
+
+  // Rotate third row 3 columns to left
+  temp       = (*state)[0][3];
+  (*state)[0][3] = (*state)[3][3];
+  (*state)[3][3] = (*state)[2][3];
+  (*state)[2][3] = (*state)[1][3];
+  (*state)[1][3] = temp;
+}
+
+static uint8_t xtime(uint8_t x)
+{
+  return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
+}
+
+// MixColumns function mixes the columns of the state matrix
+static void MixColumns(void)
+{
+  uint8_t i;
+  uint8_t Tmp,Tm,t;
+  for(i = 0; i < 4; ++i)
+  {  
+    t   = (*state)[i][0];
+    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
+    Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][3] ^ t ;        Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
+  }
+}
+
+// Multiply is used to multiply numbers in the field GF(2^8)
+#if MULTIPLY_AS_A_FUNCTION
+static uint8_t Multiply(uint8_t x, uint8_t y)
+{
+  return (((y & 1) * x) ^
+       ((y>>1 & 1) * xtime(x)) ^
+       ((y>>2 & 1) * xtime(xtime(x))) ^
+       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
+       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
+  }
+#else
+#define Multiply(x, y)                                \
+      (  ((y & 1) * x) ^                              \
+      ((y>>1 & 1) * xtime(x)) ^                       \
+      ((y>>2 & 1) * xtime(xtime(x))) ^                \
+      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
+      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \
+
+#endif
+
+// MixColumns function mixes the columns of the state matrix.
+// The method used to multiply may be difficult to understand for the inexperienced.
+// Please use the references to gain more information.
+static void InvMixColumns(void)
+{
+  int i;
+  uint8_t a,b,c,d;
+  for(i=0;i<4;++i)
+  { 
+    a = (*state)[i][0];
+    b = (*state)[i][1];
+    c = (*state)[i][2];
+    d = (*state)[i][3];
+
+    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
+    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
+    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
+    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
+  }
+}
+
+
+// The SubBytes Function Substitutes the values in the
+// state matrix with values in an S-box.
+static void InvSubBytes(void)
+{
+  uint8_t i,j;
+  for(i=0;i<4;++i)
+  {
+    for(j=0;j<4;++j)
+    {
+      (*state)[j][i] = getSBoxInvert((*state)[j][i]);
+    }
+  }
+}
+
+static void InvShiftRows(void)
+{
+  uint8_t temp;
+
+  // Rotate first row 1 columns to right  
+  temp=(*state)[3][1];
+  (*state)[3][1]=(*state)[2][1];
+  (*state)[2][1]=(*state)[1][1];
+  (*state)[1][1]=(*state)[0][1];
+  (*state)[0][1]=temp;
+
+  // Rotate second row 2 columns to right 
+  temp=(*state)[0][2];
+  (*state)[0][2]=(*state)[2][2];
+  (*state)[2][2]=temp;
+
+  temp=(*state)[1][2];
+  (*state)[1][2]=(*state)[3][2];
+  (*state)[3][2]=temp;
+
+  // Rotate third row 3 columns to right
+  temp=(*state)[0][3];
+  (*state)[0][3]=(*state)[1][3];
+  (*state)[1][3]=(*state)[2][3];
+  (*state)[2][3]=(*state)[3][3];
+  (*state)[3][3]=temp;
+}
+
+
+// Cipher is the main function that encrypts the PlainText.
+static void Cipher(void)
+{
+  uint8_t round = 0;
+
+  // Add the First round key to the state before starting the rounds.
+  AddRoundKey(0); 
+  
+  // There will be Nr rounds.
+  // The first Nr-1 rounds are identical.
+  // These Nr-1 rounds are executed in the loop below.
+  for(round = 1; round < Nr; ++round)
+  {
+    SubBytes();
+    ShiftRows();
+    MixColumns();
+    AddRoundKey(round);
+  }
+  
+  // The last round is given below.
+  // The MixColumns function is not here in the last round.
+  SubBytes();
+  ShiftRows();
+  AddRoundKey(Nr);
+}
+
+static void InvCipher(void)
+{
+  uint8_t round=0;
+
+  // Add the First round key to the state before starting the rounds.
+  AddRoundKey(Nr); 
+
+  // There will be Nr rounds.
+  // The first Nr-1 rounds are identical.
+  // These Nr-1 rounds are executed in the loop below.
+  for(round=Nr-1;round>0;round--)
+  {
+    InvShiftRows();
+    InvSubBytes();
+    AddRoundKey(round);
+    InvMixColumns();
+  }
+  
+  // The last round is given below.
+  // The MixColumns function is not here in the last round.
+  InvShiftRows();
+  InvSubBytes();
+  AddRoundKey(0);
+}
+
+static void BlockCopy(uint8_t* output, uint8_t* input)
+{
+  uint8_t i;
+  for (i=0;i<KEYLEN;++i)
+  {
+    output[i] = input[i];
+  }
+}
+
+
+
+/*****************************************************************************/
+/* Public functions:                                                         */
+/*****************************************************************************/
+#if defined(ECB) && ECB
+
+
+void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output)
+{
+  // Copy input to output, and work in-memory on output
+  BlockCopy(output, input);
+  state = (state_t*)output;
+
+  Key = key;
+  KeyExpansion();
+
+  // The next function call encrypts the PlainText with the Key using AES algorithm.
+  Cipher();
+}
+
+void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output)
+{
+  // Copy input to output, and work in-memory on output
+  BlockCopy(output, input);
+  state = (state_t*)output;
+
+  // The KeyExpansion routine must be called before encryption.
+  Key = key;
+  KeyExpansion();
+
+  InvCipher();
+}
+
+
+#endif // #if defined(ECB) && ECB
+
+
+
+
+
+#if defined(CBC) && CBC
+
+
+static void XorWithIv(uint8_t* buf)
+{
+  uint8_t i;
+  for(i = 0; i < KEYLEN; ++i)
+  {
+    buf[i] ^= Iv[i];
+  }
+}
+
+void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+  intptr_t i;
+  uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
+
+  BlockCopy(output, input);
+  state = (state_t*)output;
+
+  // Skip the key expansion if key is passed as 0
+  if(0 != key)
+  {
+    Key = key;
+    KeyExpansion();
+  }
+
+  if(iv != 0)
+  {
+    Iv = (uint8_t*)iv;
+  }
+
+  for(i = 0; i < length; i += KEYLEN)
+  {
+    XorWithIv(input);
+    BlockCopy(output, input);
+    state = (state_t*)output;
+    Cipher();
+    Iv = output;
+    input += KEYLEN;
+    output += KEYLEN;
+  }
+
+  if(remainders)
+  {
+    BlockCopy(output, input);
+    memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */
+    state = (state_t*)output;
+    Cipher();
+  }
+}
+
+void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+  intptr_t i;
+  uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
+  
+  BlockCopy(output, input);
+  state = (state_t*)output;
+
+  // Skip the key expansion if key is passed as 0
+  if(0 != key)
+  {
+    Key = key;
+    KeyExpansion();
+  }
+
+  // If iv is passed as 0, we continue to encrypt without re-setting the Iv
+  if(iv != 0)
+  {
+    Iv = (uint8_t*)iv;
+  }
+
+  for(i = 0; i < length; i += KEYLEN)
+  {
+    BlockCopy(output, input);
+    state = (state_t*)output;
+    InvCipher();
+    XorWithIv(output);
+    Iv = input;
+    input += KEYLEN;
+    output += KEYLEN;
+  }
+
+  if(remainders)
+  {
+    BlockCopy(output, input);
+    memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */
+    state = (state_t*)output;
+    InvCipher();
+  }
+}
+
+
+#endif // #if defined(CBC) && CBC
+
+
diff --git a/src/aes.h b/src/aes.h
new file mode 100644
index 0000000..708a09c
--- /dev/null
+++ b/src/aes.h
@@ -0,0 +1,40 @@
+#ifndef _AES_H_
+#define _AES_H_
+
+#include <stdint.h>
+
+
+// #define the macros below to 1/0 to enable/disable the mode of operation.
+//
+// CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding.
+// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
+
+// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
+#ifndef CBC
+  #define CBC 1
+#endif
+
+#ifndef ECB
+  #define ECB 1
+#endif
+
+
+
+#if defined(ECB) && ECB
+
+void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
+void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
+
+#endif // #if defined(ECB) && ECB
+
+
+#if defined(CBC) && CBC
+
+void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+
+#endif // #if defined(CBC) && CBC
+
+
+
+#endif //_AES_H_
-- 
2.1.0



More information about the devel mailing list